If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.5x^2-2x-2=0
a = 0.5; b = -2; c = -2;
Δ = b2-4ac
Δ = -22-4·0.5·(-2)
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{2}}{2*0.5}=\frac{2-2\sqrt{2}}{1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{2}}{2*0.5}=\frac{2+2\sqrt{2}}{1} $
| -7+4v=21 | | y4.16=1.5 | | 2/7y-3=1/2y | | x+23=47x= | | -8(0)+6y=-24 | | s-7=4/5 | | h+8.1=9.3 | | j+2/5=4/5 | | c-3/5=3/5 | | u-7=9/10 | | t+1/6=8 | | z-5.7=4.2 | | y-5=1/3 | | t/10+6=15 | | 2.2+6=y | | 1/9+m=3 | | b-9/10=7/10 | | s-2.6=3.4 | | h+3.8=8.8 | | k-9=1/4 | | g+5/8=7/8 | | 12d+16=16 | | 2(d+8)=20 | | 2(d+8)=20 | | 2(d+8)=20 | | 2(d+8)=20 | | 7x-9=4x-69 | | 7x-9=4x-69 | | 7x-9=4x-69 | | 7x-9=4x-69 | | 65=z+31 | | 65=z+31 |